Apklausa
Kokią specialybę rengiatės studijuoti?
Referatai, kursiniai, diplominiai
Rasti 304 rezultatai
Vidinė kompiuterio atmintis
2010-12-11
Atmintis kompiuteryje skirstoma į vidinę ir išorinę arba laikinąją ir pastoviąją. Laikinoji arba vidinė atmintis nuo išorinės skiriasi tuo, kad išjungus kompiuterį laikinoji atmintis prapuola, o pastovioji išlieka. Didžiausią reikšmę kompiuteriui turi vadinamoji RAM atmintinė, ji taip pat dar vadinama pagal tai kokios rūšies atmintis yra naudojama kompiuteryje. Seniau buvo labai paplitusi SIMM atmintinė, vėliau ją pakeitė našesnė DIMM. Dabar atmintis vadinama labai įvairiai, dažniausiai pagal tai kokias funkcijas ar galimybes turi ta atmintinė. Labiausiai paplitusi tikriausiai yra SDRAM, RDRAM arba kitaip dar vadinama “Rambus” stengiasi pakeisti dabar naudojamas, ji yra kiek kitokios struktūros ir prieš pradedant ją gaminti buvo manoma, kad pradėjus ją pardavinėti ji ilgai netruks kol išstums dabar naudojamas atmintines, tačiau ją išleidus buvo pastebėta keletas trūkumų, dėl ko jos paplitimas gali užtrukti, be to jai reikia konkuruoti su naująja DDR SDRAM . Vidutinis kiekis dabar naudojamos RAM atmintinės yra nuo 32 Mb iki 128 Mb.
Dažniausiai sisteminę magistralę sudaro nuo 50 iki 100 laidininkų. Kiekvienas laidininkas atlieka skirtingą funkciją. Nepaisant to, kad yra daug magistralių tipų, kiekvienoje iš jų laidininkai gali būti grupuojami į tris funkcines laidininkų grupes:
- adresų,
- duomenų,
- valdymo linijos.
Be šių dar gali būti maitinimo linijų, reikalingų maitinti prie magistralės prijungtiems moduliams.
Adresų linijomis nurodomas duomenų magistralėje esančios informacijos šaltinis ir imtuvas. Duomenų magistralės plotis lemia didžiausią galimą kompiuterio sistemos atminties talpą. Be to, adresų linijos dar naudojamos Įvesties/ išvesties prievadams adresuoti.
Duomenų linijomis vyksta keitimasis duomenimis tarp kompiuterio modulių. Šių laidininkų visuma vadinama duomenų magistrale. Laidininkų skaičius nusako magistralės plotį (skiltiškumą). Kiekvienu laidininku tam tikru laiko momentu gali siunčiamas tik vienas bitas, todėl laidininkų skaičius parodo kiek duomenų galima siųsti vienu metu. Duomenų magistralės plotis yra svarbus parametras, lemiantis visos kompiuterinės sistemos pajėgumą.
Valdymo magistralė kontroliuoja kreiptis į duomenų ir adresų linijas ir šių linijų naudojimą.
3. Magistralių hierarchija
Jungiant į magistralę daugiau įrenginių nukenčia jos pajėgumas. Tai yra dėl dviejų priežasčių:
1. Kuo daugiau įrenginių sujungta į magistralę tuo didesnė signalų delsa. Delsą lemia laikas per kurį tam tikras įrenginys koordinuoja naudojimąsi magistrale. Kai magistralės valdymas dažnai pereina nuo vieno įrenginio kitam, ši delsa gali labai paveikti bendrą našumą.
2. Magistralė gali tapti kompiuterio silpnąja vieta, jeigu keitimosi duomenimis intensyvumas viršys magistralės galimybes. Šią problemą iš dalies galima išspręsti didinant duomenų siuntimo intensyvumą ir taikant platesnes magistrales. Tačiau keitimosi duomenimis, kuriuos generuoja į magistralę įjungti įrenginiai, tempai labai spartėja ir galiausiai nebebus užtikrinamas atitinkamas našumas.
Siekiant spręsti šias problemas daugelyje sistemų naudojamos kelios magistralės. Yra tam tikra jų hierarchija. Dauguma kompiuterizuotų sistemų naudoja keliais magistrales. 2.1 pav. Yra keturios magistralės – lokalioji magistralė, PCI, AGP ir ISA.
3.1 pav. Magistralių hierarchijos pavyzdys
4. AGP magistralės veikimo principai
AGP magistralė buvo sukurta kaip aukšto našumo grafinė jungtis. Ši jungtis išvengia PCI magistralės silpnųjų vietų, ir turi tiesioginį ryšį su pagrindine atmintimi. Naujoji AGP 3.0 specifikacija papildyta 8x rūšimi, kuri leidžia padvigubinti maksimalų siunčiamų duomenų persiuntimą palyginus su ankstesniu 4x, per vieną magistralės ciklą persiunčiamas dvigubai didesnis duomenų kiekis. 4.1 pav. matome grafinių jungčių pralaidumų didėjimą nuo PCI jungties iki AGP 8x. Čia AGP 1x, AGP 2x, AGP 4x ir AGP 8x pristato duomenų persiuntimo greičius.
4.1 pav.: Skirtingų jungčių duomenų pralaidumo būdai
4.1 AGP 3.0 jungties savybės
• Naujas 8x duomenų persiuntimo būdas, padvigubinantis pralaidumą iki 2.1GB/s.
• Nauja signalų siuntimo schema su keliais invertuotais signalais ir mažu įtampos svyravimu.
• Naudojamas šoninis adresavimas, siekiant geresnio duomenų magistralės išnaudojimo.
• Įjungiama kalibravimo schema, gerinanti signalo kokybę.
• Dinaminė magistralės inversija, triukšmų mažinimui.
• Asinchroninis veikimo būdas įgalinantis nenutrūkstamą duomenų siuntimą tinkamą video srautams.
4.2 Suderinamumas su AGP 4x
• AGP 8x yra suderinama su AGP 4x jungtimi.
• Tinka tie patys AGP 4x laidininkai, tik pridėta keletas signalinių jungčių AGP 8x palaikymui.
• Naudojama ta pati jungtis kaip ir AGP 4x.
• Suderinama su AGP 4x ir AGP Pro maitinimo schema.
• motinines plokštės gali palaikyti abudu AGP 4x ir AGP 8x tipus.
4.3 Pagrindinės plokštės su AGP 8x architektūra
4.2 pav. matome subalansuotos pagrindinės plokštės architektūros pavyzdį. Aštuntos generacijos AMD Athlon™ procesorius su pagrindine plokšte sujungtas per AMD-8151™ HyperTransport AGP 3.0 grafinį tunelį. 6.4GB/s pilnas pralaidumas iš CPĮ į HyperTransport modulį įgalina AGP 8x ir kitus sisteminius Į/I modulius pasiekti optimalų našumą.
4.2 pav.: subalansuota pagrindinė plokštė su AGP 8x lizdu.
4.4 AK grafinės sistemos evoliucija
Kad suprastume AGP grafikos privalumus ir naudą, reikia suprasti problemas kurios buvo sprendžiamos besivystant AGP technologijai. 4.3 pav. matome grafinės sistemos architektūrą sukurtą PCI magistralės pagrindu. Čia grafinė sistema patalpinta PCI magistralėje. Atkreipkite dėmesį kad PCI grafinis adapteris turi savyje integruotą video atmintį. Nors praeityje toks techninis sprendimas pasiteisino, atsirado keletas problemų kurios paskatino AGP grafikos atsiradimą:
1. Patobulinti grafines sistemos atmintį yra brangu, nes papildomi atminties moduliai turi būti pridėti į grafinę plokštę, arba turi būti keičiama pati plokštė.
2. Kadangi grafiniai duomenys, tokie kaip tekstūros yra saugomi pagrindinėje atmintyje, tai PCI magistralėje esanti grafinė plokštė juos gali pasiekti tik per PCI magistralę. Kreiptis tų duomenų reikia dažnai, nes pati grafinė plokštė turėdavo nedaug savos atminties. Taigi grafinė plokštė turi konkuruoti su kitais PCI magistralės moduliai dėl magistralės užimtumo ir pralaidumo.
3. Ir jeigu grafikos plokštė dažnai kreipiasi į PCI magistralę tada kiti magistralės periferiniai įrenginiai ,,badauja”.
4.3 pav.: Senesnio tipo pagrindinė plokštė naudojanti PCI magistralę grafikos apdorojimui.
4.4 ir 4.5 paveikslėliuose matome kaip AGP technologija išsprendžia problemas kilusias esant PCI magistralės grafikos plokštei. Šiuo atvejų AGP magistralė priklauso jau sistemos kontroleriui. AGP plokštė naudojasi 66 MHz PCI magistralės protokolu ir dar šoninio adresavimo galimybe siųsti komandas iš grafikos plokštės į AGP loginį įrenginį esantį Šiauriniame tilte. Šiaurinis tiltas priima skaitymo/ rašymo ir kitų komandų užklausas (naudoja buferius) tam kad įgalintų apsikeitimą duomenimis ir komandomis tarp AGP įrengininio ir sistemos kontrolerio, pilnu greičiu ir dar tuo pat metu keistųsi duomenimis tarp sistemos kontrolerio ir DDR atminties modulių.
4.4pav.: AMD-762™ sisteminis kontroleris ir AGP grafinė sistema. Vaizduojamas pagrindinės atminties naudojimas grafinėms operacijoms.
Sistemų pavyzdžiai parodyti 4.4 ir 4.5 paveikslėliuose duoda tokią naudą:
• Vietinė AGP sistemos architektūra siūlo svarbius našumo patobulinimus palyginus su PCI magistralės pagrindu veikusią grafinę sistemą.
• AGP architektūra leidžia AGP grafinei sistemai matyti ir naudoti pagrindinę atmintį taip tarsi tai būtų jos pačios integruota atmintis – tai reiškia kad AGP plokštė dalinasi sistemine atmintimi. AGP grafinė plokštė nejaučia skirtumo tarp jos pačios ir pagrindinės atminties, visa atmintis atrodo kaip jos, vietinė. Galinis vartotojas gali didinti grafinės sistemos našumą įdėdamas papildomą pagrindinę atmintį vietoj to, kad papildytų brangią grafinę atmintį.
• Grafinė sistema jau nebeturi konkuruoti dėl PCI magistralės pralaidumo kad pasiektų duomenis iš pagrindinės atminties. Tai leidžia grafiniai sistemai dirbti pilnu greičiu, beveik neturint pertraukčių iš kitų sistemos komponentų. Tai padidina visos sistemos konkurencingumą – reiškia kad procesorius, AGP grafinė sistemą, PCI magistralės įrenginiai gali veikti nepriklausomai vienas nuo kito ir konkurencingiau, taip didindami bendrą sistemos našumą.
• PCI magistralės įrenginiai gali laisvai naudotis PCI magistrale, jiems nereikia ,,rungtis” su grafiniu adaptoriumi dėl magistralės. Taip PCI magistralė atsilaisvino nuo grafinės sistemos, padidėjo jos pasiekiamumas.
4.5 pav.: Aukšto lygio AGP prievado diagrama. Matome magistralės architektūrą ir Šiaurinio tilto komponentus.
Bėgant laikui grafinė sistema buvo tobulinama, pervedama vis į didesnio našumo lygius. Kaip matome lentelėje yra eilė AGP tipų (duomenų siuntimo greičių) kurie atsirado laikui bėgant. Tai panašu į pavarų dėžę sportiniame automobilyje, pirma pavara atitiktų pirmąjį AGP 1x tipą, siūlantį duomenų persiuntimo greitį iki 264 MB/s. Antra pavara būtų AGP 2x, kuri padvigubino duomenų persiuntimą iki 528 MB/s. Trečia yra AGP 4x, siūlanti greitį iki 1 GB/s. Ir galiausiai ketvirtoji – paskutinė atitiktų AGP 8x, ir turėtų aukščiausią duomenų persiuntimo greitį – iki 2,1 GB/s. (Kaip pastebėjote žymėjimas 2x, 4x, ir 8x yra susijęs su pradiniu AGP 1x).
4.1 lentelė: AGP tipai ir atitinkami duomenų pralaidumai.
AGP magistralės tipas Duomenų pralaidumas
AGP 1x Iki 264 MB/s
AGP 2x Iki 528 MB/s
AGP 4x Iki 1 GB/s
AGP 8x Iki 2,1 GB/s
4.5 vRAM tipai
Grafinėse plokštėse atmintis susideda iš 2 dalių: kadro atminties ir papildomos atminties. Pigiose grafinėse plokštėse vRAM yra sudaryta iš SDRAM tipo atminčių, o greitose iš DDR-SDRAM. Yra specializuotos atmintys: VRAM-video atmintis, EDO VRAM , WRAM, SGRAM. Sparčiausios ir brangiausios yra VRAM ir WRAM. Grafinėse plokštėse informacija perduodama 64,128 ir net 265 bitų magistralėmis. Atminties kiekis būna : 34 DDR,64 MB DDR, 128 MB DDR, 512 MB DDR ir t.t.
4.6 Grafinis procesorius
Jie yra visose grafinėse plokštėse, tai specializuota mikroschema. Grafinį procesorių valdo pagrindinis procesorius, o GP paskirtis yra grafinių objektų vaizdavimas ekrane. Yra 2D-dvimačių vaizdų, 3D- trimačių ir 2D/3D universalūs grafiniai procesoriai. Naujos plokštės turi 3D grafinį procesorių.
Grafinių plokščių lyderis (buitinė, o ne profesionali) yra “nVidia GeForce X” šeimos vaizdo procesoriai. Juos gamina kompanija “nVidia”. Juose yra naudojama tik DDR atmintis. Juose naudojama sparti 166 MHz DDR SDRAM atmintis. 2002 vasaros pradžioje pristatytas 3D, trimačių vaizdų “nVidia GeForce4 Ti 4600” procesorius . Teigiama, kad “GeForce4” yra naujos kartos “nVidia” vaizdo procesoriai. Jie skirti 3D vaizdų kūrėjams ir žaidėjams, norintiems turėti itin gerus vaizdus. Atminties laidumas 2,7GB/s , 6,4 GB/s , 8,8 GB/s.
4.6 pav. AGP plokščių jungčių pagrindiniai išmatavimai
4.7 Apibendrinimas
AGP magistralės tipas AGP 8x yra sekantis žingsnelis pirmyn didelio našumo grafinių jungčių evoliucijoje. Jis iš tikrųjų beveik dvigubai padidino AGP 4x grafikos galią. Ši sistema pasistūmėjo priekin tiekiant galiniam vartotojui vis geresnį ir tikroviškesnį vaizdą. Tačiau tai yra pats paskutinis AGP grafinių plokščių tobulinimo žingsnis, ateityje jau seks PCI Express grafikos apdorojimo plokštės.
5. Nuo PCI iki PCI Express – magistralių vystymasis
5.1 PCI Magistralė
Nuo pradėjimo naudoti 1992 metais, PCI magistralė tapo stuburu Į/I įrenginiams visose kompiuterinėse sistemose. Pati pradinė 33 MHz ir 32 bitų pločio magistralė parodė teorinį greitį iki 133 MB/s. Laikui bėgant industrija išleido naujesnes platformų architektūras kuriose PCI magistralė buvo keičiama našesniais jos papildymais, tokiais kaip AGP ir PCI X, abidvi yra patobulinti PCI magistralės variantai. 1 lentelėje pristatomi PCI, PCI-X, ir AGP magistralių pralaidumai.
1 lentelė: PCI, PCI-X, ir AGP magistralių pralaidumai
Magistralė ir jos dažnis 32 bitų pločio pralaidumai 64 bitų pločio pralaidumai
33 MHz PCI 133 MB/s 266 MB/s
66 Mhz PCI 266 MB/s 532 MB/s
100 MHz PCI X Nenaudojama 800 MB/s
133 MHz PCI X Nenaudojama 1 GB/s
AGP 8x 2,1 GB/s Nenaudojama
Iš arčiau tyrinėdami PCI signalų siuntimo technologiją atrandame multinumetimą magistralę (Multinumetimo [eng. multidrop] magistralė gaunama tada, kai prie jos jungiami įrenginiai, kiekvienas tais pačiais laidininkais. Kada vienas įrenginys naudoja magistralę, joks kitas negali pasiekti magistralės. Įrenginiai privalo dalintis magistrale ir laukti savo eilės, kol kiekvienas galės siųsti ar priimti duomenis), ir tai kad paraleli magistralė jau siekia savo našumo ribas. PCI magistralė negali būti paprastai patobulinta keliant taktinį dažnį, ar mažinant įtampą. Ir dar PCI magistralė neturi tokių savybių kaip galios valdymas, vietinių periferinių junginių karšto jungimo ar keitimo, (Galimybė įdėti ir išimti įrenginius iš kompiuterio jo neišjungus, ir kad operacinė sistema automatiškai atpažintų pasikeitimus), arba aptarnavimo kokybės [eng. QoS – Qualitu of service] kuri užtikrintų atitinkamą pralaidumą realių operacijų metu. Galiausiai visas įmanomas PCI magistralės pralaidumas yra tik į vieną pusę (siunčiant arba priimant) vienu laiko momentu. Daugelis ryšių tinklų palaiko dvikryptį eismą vienu laiko momentu, tai sumažina pranešimų vėlavimus.
5.2 Namų sistemos
Pradinė PCI magistralė buvo kuriama kad palaikytų 2D grafiką, aukštesnio našumo diskinius kaupiklius ir vietinius tinklus. Neilgai trukus po PCI magistralės atsiradimo, išaugę 3D grafikos sistemų reikalavimai jau nebetilpo į 32 bitų, 33 MHz PCI magistralės pralaidumą. Siekdami tai pataisyti kompanija Intel ir keletas kitų grafinių gaminių gamintojų sukūrė AGP magistralės specifikaciją. Kuri buvo apibrėžta kaip aukšto našumo PCI magistralė skirta grafikai apdoroti. Taigi AGP magistralė išlaisvino PCI sisteminę magistralę nuo grafikos eismo, ir paliko ją kitiems ryšiams bei Į/I operacijoms. Prie to Intel kompanija įvedė USB 2.0 ir Nuoseklią ATA jungtis į pietinį tiltą, taip dar labiau sumažindama Į/I operacijų paklausą PCI magistralėje. 5.1 pav. matome tipiškos namų vartotojo sistemos vidinę architektūrą su Į/I ir grafinio įrenginių pralaidumais.
5.1 pav.: Tipinė namų vartotojo sistemos architektūra
5.3 Namų vartotojo sistemos silpnosios vietos
Keletas namų vartotojo sistemos magistralių gali riboti sistemos našumą, dėl CPĮ, atminties ir Į/I įrenginių skirtumų: tai PCI magistralė, AGP magistralė ir ryšys tarp Šiaurinio ir pietinių tiltų.
PCI magistralė. PCI magistralė suteikia iki 133 MB/s pralaidumą įjungtiems į ją įrenginiams. Keletas šių įrenginių gali išnaudoti visą pralaidumo juostą, arba naudoti didžiąją jos dalį. Kada daugiau kaip vienas šių įrenginių yra aktyvus, bendrai naudojama magistralė jau spaudžiama virš jos pralaidumo ribos. 5.2 pav. matome daugelį veiksnių taikančių į PCI magistralės silpnąją vietą. Šiame paveikslėlyje matome kokio pralaidumo reikia įvairiems ryšių, video, ir kitiems išoriniams įrenginiams kurie yra aptarnaujami PCI magistralės. Taigi matome kad multinumetama, bendrai naudojama, PCI magistralė yra spaudžiama kad palaikytų šiandienos įrenginius. Situaciją blogina tai kad kuriami įrenginiai su vis didesniais duomenų greičiais. Pavyzdžiui Gigabit Ethernet reikalauja laidumo iki 125 MB/s, tai jau beveik pilnai užpildo 133 MB/s PCI magistralę. Įrenginio IEEE 1394b magistralė yra iki 100 MB/s, tai irgi beveik užpildo standartinę PCI magistralę.
AGP. Paskutinį dešimtmetį video našumo reikalavimai praktiškai dvigubėjo kas du metai. Per šį laikotarpį grafinė magistralė iš PCI tapo AGP, iš AGP – AGP 2x, AGP 4x ir galiausiai šiuo metu AGP 8x. AGP 8x dirba 2,134 GB/s greičiu. Nežiūrint šio greičio viskas žengia į priekį ir AGP magistralėms jau keliami nauji dar didesni reikalavimai. Spaudimas daromas ir pagrindinių plokščių dizainui ir jungčių kainoms. Kaip ir PCI magistralę, plėsti AGP magistralę darosi sunku ir brangu, nes didėja taktiniai dažniai.
5.2 pav.: Įrenginių aptarnaujamų PCI magistralės pralaidumo dažniai
Ryšys tarp Šiaurinio ir Pirtinio tiltų. PCI magistralės perpildymas taip pat atsiliepia ir ryšiui tarp Šiaurinio ir Pietinio tiltų. Serial ATA diskai ir USB įrenginiai toliau spaudžia šį ryšį. Taigi ateityje aukštesnio pralaidumo ryšys bus reikalingas.
5.4 Serveriai
Serveriuose pradinė 32 bitų, 33 MHz PCI magistralė buvo išplėsta iki 64 bitų, 66 MHz magistralės su pralaidumu iki 532 MB/s. Po to 64 bitų magistralė buvo patobulinta iki 100 ir 133 MHz, ir pavadinta PCI X. PCI X magistralė jungia serverinės sistemos (dviejų procesorių darbo stotis) mikroschemų rinkinį su išplėtimo jungtimis, Gigabit Ethernet valdikliais, ir Ultra 320 SCSI valdiklius įtaisytus pagrindinėje plokštėje.
64 bitų, 133 MHz dažniu dirbanti magistralė persiunčia iki 1 GB/s duomenų tarp Į/I įrenginio ir valdymo schemos. Tai yra tenkinantis pralaidumas daugumai serverinių sistemų Į/I įrenginių reikalavimui, tokių kaip Gigabit Ethernet, Ultra 320 SCSI, ir 2 GB/s Fibre Channel. Tačiau kaip bebūtų PCI X ,kaip ir PCI, yra bendro naudojimo magistralė ir panašu kad jai jau sekančiais metais reikės dar didesnio našumo alternatyvos. PCI Special Interest Group (PCI SIG) jau kuria PCI X 2.0 specifikaciją, kuri dirbtų 64 bitų, 266 MHz taktiniu dažniu ir padidintų duomenų perdavimo greitį dvigubai palyginus su PCI X 133 MHz. Tačiau kaip bebūtų iškyla problemos plečiant šį lygiagrečios PCI X magistralės variantą. Pačios jungtys yra didelės ir brangios, ir griežtas jų dizainas gana smarkiai kelia pagrindinių plokščių kainas keliant ir taktinį dažnį. Prie to dar reikia pridėti tai kad išvengtume papildomo elektrinio apkrovimo aukštesniuose dažniuose, PCI X 2.0 tik vienas įrenginys galės būti jungiamas prie magistralės. Ši jau nebus pritaikoma bendram naudojimui.
Serverinės sistemos silpnosios vietos
5.3 pav. matome tipinės dviejų procesorių serverinės sistemos vidines jungtis. Šioje architektūroje aukšto laidumo išplėtimo magistralė padaroma atskirai sujungus Šiaurinį tiltą su su PCI X tilto mikroschema. Keletas PCI X magistralių prijungtos prie aukšto greičio išplėtimo magistralių, 10-Gigabit Ethernet, ir SAS/SATA diskų valdikliai. Ši architektūra turi ir neigiamų savybių. Atskira PCI X tilto mikroschema sujungia keletą lygiagrečių PCI X magistralių į į pagrindinės plokštės valdymo mikroschemos atskirą nuoseklią jungtį. Šis kelias yra brangus neefektyvus, ir dar atsiranda vėlavimai tarp Į/I įrenginio ir Šiaurinio tilto. Pavyzdžiui šiuo būdų prijungus 10 Gbps plokštę į 64 bitų lygiagrečią jungtį, taip išeina kad įrenginys yra tiesiogiai per PCI X tilto valdiklį į atskirą nuoseklią jungtį su Šiauriniu tiltu.
5.3 pav.: Dviprocesorinis serveris
dar galima pridėti kad sekančios kartos išoriniai serveriniai Į/I įrenginiai reikalaus daug didesnio pralaidumo negu 133 MHz PCI X magistralė gali užtikrinti. Tai tokios technologijos kaip 10-Gigabit Ethernet, 10-Gbps Fibre Channel ir 4x Infiniband, prie jų taip pat priskaitomi ir labai aukšto greičio diskinių kaupiklių jungtys tokios kaip 3-Gbps SATA ir SAS. Tokiu atveju jeigu turėtumėm 10-Gbps fabric įrenginį, kiekvienas 10 Gbps lizdas į abi kryptis gali siųsti duomenų srautą iki 2 GB/s, tuo tarpu PCI X magistralė maksimaliai gali priimti tik 1 GB/s į vieną pusę vienu laiko momentu. Taigi matome, kad ši magistralė ribotų šį įrenginį iki 50 %. Nors PCI X 2.0 dirbanti 266 MHz padvigubintų tai ką gali pristatyti PCI X iki 2 GB/s tačiau tai vis tiek būtų per mažai, nes iš viso 4 GB/s reikalingi dviejų lizdų, dvipusiam 10-Gbps fabric valdikliui. Iš to matome kad reikalinga magistralė galinti pakeisti lygiagrečią PCI magistralę ir jos variantus.
5.5 PCI Express technologija
PCI Express siūlo keliamą daugikliu, aukšto greičio, nuoseklią Į/I magistralę kuri turi gali yra suderinama ir su PCI įrenginiais. PCI Express sluoksniuota architektūra palaiko esančius PCI įrenginius, taip pat ir dabartinę plokščio adresavimo galimybę. PCI Express yra aprašoma kaip aukšto našumo, taškas į tašką jungiama, su daugikliais, nuoseklioji magistralė.
PCI Express susideda iš dviejų vienkrypčių kanalų, kiekvienas iš jų sudarytas iš siuntimo ir priėmimo poros, kad būtų įmanomas siuntimas abiem kryptimis tuo pačiu laiko momentu. Kiekvienoje iš porų yra du žema įtampa valdomi signalai. Duomenų taktavimas integruotas į kiekvieną porą, naudoja 8b/10b kodavimo schemą, kad pasiektų tokius aukštus duomenų siuntimo kiekius. 5.4 pav. galime palyginti PCI ir PCI Express sujungimus.
5.4 pav.: PCI Prieš PCI Express
PCI Express magistralės pralaidumą galime didinti įdėdami papildomas signalų poras tarp dviejų įrenginių. Ši magistralė palaiko x1, x4, x8, ir x16 linijų pločius, ir išdėlioja duomenų baitus pagal linijas. Kada du įrenginiai paruošia linijas ir darbo dažnį , duomenys yra siunčiami naudojant 8b/10b kodavimą. Pats pradinis x1 tipas gali siųsti iki 2,5 Gbps. Kadangi magistralė yra dvikryptė (duomenys abiem kryptimis siunčiami tuo pat momentu) tai efektyvusis siuntimo greitis yra 5 Gbps. 5.1 lentelėje matome susumuotus koduotus ir nekoduotus duomenų siuntimo greičius, naudojant x1, x4, x8, ir x16 modelius, kurie yra aprašyti jau pačioje pirmojoje PCI Express generacijoje.
PCI Express “koduotas” ir “nekoduotas” pralaidumas
Dažnai sakoma kad PCI Express pralaidumas yra koduotas. PCI Express naudoja 8b/10b kodavimą, kuris užkoduoja 8 duomenų bitus į 10 siuntimo simbolių. Tai daroma dėl to kad bitų sinchronizavimas būtų paprastesnis, paprastesnis siųstuvo ir imtuvo dizainas, padidinta galimybė surasti klaidas, ir valdymo simboliai gali būti atskirti nuo duomenų simbolių. Koduotas PCI Express x1 linijos pralaidumas yra 5 Gbps. Ko gero daug tikslesnis yra nekoduotas pralaidumas kuris būna apie 80 % nuo koduoto t.y. nuo 5 Gbps - 4 Gbps. 5.2 lentelėje matome koduotų ir nekoduotų duomenų siuntimo pralaidumus.
5.2lentelė. PCI Express pralaidumas
Ateityje šios magistralės tobulinimai dar labiau pakels kanalų dažnį, pavyzdžiui antros kartos PCI Express galėtų pakelti taktavimo dažnį du kartus ir daugiau. Kadangi ši magistralė yra tiesioginė, taškas į tašką tai jos dažnis priklausys prie no jos prijungto įrenginio. Keletas PCI Express įrenginių galės veikti vienu metu netrukdydami vienas kitam. Priešingai negu PCI, PCI Express turi minimalius pašalinius signalus, be to ir taktavimo dažniai ir adresai yra sudėti į duomenų srautą. Todėl kad PCI Express yra nuosekli magistralė su keliais šalutiniais signalais, ji praleidžia labai daug duomenų per vieną jungties laidininką, daug daugiau palyginus su PCI. Tokia archtektūra leidžia turėti efektyvesnę, mažesnę ir pigesnę jungtį. 5.5 pav. bandoma palyginti duomenų kiekio pralaidumą per vieną jungties takelį PCI, PCI-X, AGP, ir PCI Express magistralėse.
5.5 pav.: Duomenų pralaidumo per vieną jungties takelį palyginimai
PCI Express technologijoje didelis duomenų perdavimo patikimumas pasiekiamas naudojant žemos įtampos diferencialinius signalus. Čia signalas iš siųstuvo imtuvui siunčiamas per dvi linijas. Vienoje linijoje siunčiamas teigiamas signalas, o kitoje tas pats signalas tiktais invertuotas arba neigiamas. Linijos kuriomis siunčiami signalai daromos pagal griežtas taisykles, siekiant gauti tą savybę kad jei vieną liniją keis trukdžiai ir kita bus keičiama tų pačių trukdžių. Imtuvas priima abu signalus, neigiamą atverčia atgal į teigiamą, ir sumuoja abudu, taip efektyviai pašalinami triukšmai. Pradinė PCI Express magistralė palaiko grafines plokštes kurių vartojama galia yra iki 75 W. naujesnėje numatomos galimybės palaikyti įrenginius iki 150 W. tai turėtų tenkinti rinką nes dabartinės AGP plokštės naudoja iki 41 W, ir AGP Pro tipo iki 110 W.
5.6 Pažangiausios PCI Express savybės
PCI Express turi šias savybes kurios bus pradėtos naudoti kada operacinė sistema ir įrenginiai jau palaikys jas, ir kada vartotojui jos pasidarys reikalingos. Jos yra:
• Pažangus maitinimo valdymas
• Duomenų kontrolės realiame laike palaikymas
• Karštas jungimas
• Duomenų integralumas ir klaidų aptikimas bei taisymas
Pažangus maitinimo valdymas
PCI Express magistralėje yra aktyvios būsenos maitinimo valdymas, kuris įgalina sumažinti galios vartojimą kada magistralė yra nenaudojama (taip nutinka tada kai nėra apsikeitimo duomenimis tarp įrenginių). Paralelių magistralių atveju magistralė būna laisva kol nėra užklausos siųsti duomenis. Priešingai didelės spartos nuosekli magistralė PCI Express reikalauja kad linija būtų bet kuriuo laiko momentu pasiruošusi, kad siųstuvas ir imtuvas būtų pasiruošę siųsti duomenis. Tai padaroma nuolat siunčiant tuščiosios eigos signalus kada nėra siunčiami duomenys. Imtuvas iškoduoja ir atmeta signalus jeigu jie yra tuščiosios eigos simboliai. Šis procesas reikalauja papildomo maitinimo, o tai įtakoja nešiojamo ar delninio kompiuterio baterijos darbo laiką. Sprendžiant šią problemą buvo pasiūlytas sprendimas naudoti dvi žemos galios būsenos jungtis ir aktyvios būsenos maitinimo valdymo protokolą. Kada magistralė pereina į tuščios eigos būseną, jungtis yra nustatoma į žemo maitinimo būseną. Ši būsena naudoja daug mažiau galios kol magistralė dirba tuščiuoju režimu. Tačiau norint grįžti į normalų darbo režimą reikalingas atstatymo laikas, kurio metu siųstuvas ir imtuvas yra iš naujo sinchronizuojami. Kuo ilgesnis atstatymo laikas tuo mažiau galios magistralė naudoja tuščios eigos metu. Dažniausiai naudojamas tas atvejis kada atkūrimo laikas yra pats trumpiausias.
Duomenų kontrolės realiame laike palaikymas
Ne taip kaip PCI, PCI Express magistralė palaiko nesinchroninį (priklausantį nuo laiko) duomenų siuntimą ir įvairius Aptarnavimo kokybės lygius [angl. QoS]. Ši savybė įgyvendinta virtualių kanalų pagalba, kurie garantuoja kad duomenų paketas bus pristatytas į vietą per tam tikrą laiko momentą. PCI Express palaiko didelį tokių virtualių kanalų skaičių (kiekvienas iš jų yra nepriklausomas nuo vienas kito) į vieną liniją. Dar kiekvienas kanalas gali turėti skirtingą aptarnavimo kokybės lygį. Šis sprendimas taikomas tokioms realaus laiko operacijoms kaip garso ir vaizdo medžiagos perdavimui.
Karštas jungimas
PCI magistralės pagrindu sukurtos sistemos nepalaiko karšto jungimo ar keitimo operacijų. Vėliau patobulintoje PCI magistralėje buvo numatyta galimybė keisti išorinius įrenginius neišjungiant sistemos. Čia yra keletas reikalavimų dėl kurių buvo kuriama tokia sistema:
-Dažnai yra sunku ir kartais visai neįmanoma išjungti serverį kad pakeistume ar įdėtume periferinę plokštę. Karšto jungimo galimybė leidžia to visai nedaryti.
-Nešiojamų kompiuterių savininkai, nori turėti galimybę naudoti karšto jungimo nešiojamus diskų ar ryšių įrenginius.
PCI Express magistralė pilnai palaiko karšto jungimo ar keitimo galimybę. Nereikia jokių papildomų linijų, ir vienoda programinė įranga gali būti naudojama visiems PCI Express tipams.
Duomenų integralumas ir klaidų aptikimas bei taisymas
PCI Express palaiko visų siuntimo tipų duomenų integralumą, ir duomenų grandininius paketus. Tai labai tinkama naudoti serverinėse sistemose kur yra labai didelis tam tikrų duomenų poreikis. PCI Express taip pat palaiko klaidų tvarkykles kurios praneša apie klaidas, ir padeda duomenų atstatymo atveju.
5.7 Apibendrinimas
Taigi PCI Express magistralė yra susijusi ir su PCI magistrale, tačiau turi ir keletą pagrindinių skirtumų kurie leidžia išvystyti didelį apsikeitimo duomenimis greitį. Vienas iš jų yra didelio greičio nuosekli jungtis. Ši magistralė bus taikoma visose kompiuterių sistemose – ir nešiojamuose, ir namų vartotojų ir serveriuose, ir tarnybinėse stotyse. Mūsų rinkoje šios magistralės jau pasirodė šiais metais, tačiau kaip ir tikėtasi aukštomis kainomis.
Ergonomika
2009-10-07
Terminas ergonomika kilęs iš dviejų graikų kalbos žodžių: ergo – darbas, nomos – dėsnis. Ergonomika – tai mokslinė disciplina, tirianti žmogaus arba žmonių grupių, darbo procese naudojančių įvairias technines priemones, psichofiziologines galimybes, ribas ir ypatumus. Remiantis ergonominių tyrimų išvadomis, tobulinamos darbo priemonės, kuriamos patogios darbo vietos ir optimalios darbo aplinkos sąlygos, didinančios darbo našumą, tausojančios dirbančiojo sveikatą, mažinančios įtampą ir nuovargį.
Kompiuterių architektūra
2009-09-08
Pozicinės skaičiavimo sistemos. Pozicinių skaičiavimo sistemų samprata. Pervedimas iš vienos sistemos į kitą. Mikroprogramavimas. Procesoriaus fizinio lygio komponentės. Mikrokomandos. Interpretuojamas lygis. Interpretuojantis lygis. Komandos ADD realizacija. Ventilių mikroprograminis valdymas. Mikroprogramavimo kalba. Interpretuojamos mašimos interpretatorius. Mikroprograminio lygio projektavimas. Mikroprocesoriaus Intel 8088 architektūra. Mikroprocesoriaus architektūros samprata. Operatyvios atminties samprata. Portų sistema. Kompiuterio sandara.
Mikroprocesoriaus Intel 8088 architektūra
2009-09-07
Mikroprocesoriaus architektūrą sudaro tos jo savybės, kurios naudojamos programavime. Mikroprocesoriaus Intel 8088 architektūrą sudaro aparatūros ir mikroprogramų visuma. Pakeitus mikroprogramų rinkinį, gautume nebe mikroprocesorių Intel 8088, o kažką kito. Mikroprocesoriaus Intel 8088 architektūra realizuojama viena mikroschema su 40 išvadų. Mikroprocesoriaus Intel 8088 architektūra apibrėžiama jo vidinėmis savybėmis ir sąveika su išorinėmis mikroprocesoriaus atžvilgiu komponentėmis.
Programavimo pradžiamokslis
2009-09-07
Dvejetainis programavimas. Informacija ir duomenys. Kompiuteriniai duomenys. Skaičiavimo sistema yra visuma būdų ir priemonių, leidžianti užrašyti ar kitaip pateikti skaičius. Skaitmens reikšmė priklauso nuo užimamos vietos (pozicijos) skaičiuje. Skaičiavimo sistemos pagrindu laikomas skaičius, kuris parodo kiek kartų padidėja arba sumažėja vieno ir to paties skaitmens reikšmė, kai jis perkeliamas į vieną iš šalia esančių pozicijų.
Skaitmeninės kameros parametrai, terminai
2009-09-02
Šiame darbe aptariami parametrai, į kuriuos verta atkreipti dėmesį prieš apsisprendžiant pirkti skaitmeninę foto kamerą.
Asemblerinis programavimas ir valdymas
2009-09-02
Skiriamos pozicinės ir nepozicinės skaičiavimo sistemos. Mes kasdieną susiduriame su dešimtaine skaičiavimo sistema, kuri yra pozicinė skaičiavimo sistema. Pozicinėje skaičiavimo sistemoje simbolio, reiškiančio skaitmenį, prasmė priklauso nuo jo vietos skaičiuje. Nepozicinėje skaičiavimo sistemoje tokio simbolio prasmė nepriklauso nuo jo vietos skaičiuje.
Psichologijos pagrindai
2009-07-16
Paskaitų konspektai. Psichologijos apibrėžimas, šakos, tyrimų sritys, tyrimų metodai. Biologiniai psichologijos pagrindai. Nervų sistemos sandara. Genetika. Sensoriniai procesai. Sensorinis kodavimas. Jutimo organai. Suvokimas. Suvokimo organizavimas. Pastovumas. Dydžio, erdvės, judesio suvokimas. Sąmonė ir jos būsenos. Klasikinis sąlygojimas. Instrumentinis ir operantinis sąlygojimas. Stimulo generalizacija ir diskriminavimas. Sąlyginių reakcijų gesimas. Išmokimas ir mokymasis žmogaus vystymesi. Pastiprinimas ir bausmė. Socialinis išmokimas. Atmintis. Atminties tipai. Sensorinė, trumpalaikė ir ilgalaikė atmintis. Atminties stadijos: įsiminimas, laikymas, atgaminimas. Atminties treniravimas. Kalba ir mąstymas. Informacijos perdirbimo modelis. Sąvokos, jų išsidėstymas, hierarchija, sudarymas. Induktyvusis ir deduktyvusis mąstymas. Vaizdinis mąstymas ir kūrybiškumas. Problemų sprendimas. Kalba ir komunikavimas. Kalbos lygiai. Kalbos vystymasis. Motyvai ir emocijos. Motyvacijos teorijos. Alkis, seksualinis elgesys, socialiniai ir pasiekimo motyvai. Emocijų apibrėžimas. Emocijų teorijos. Emocinės išraiškos.
Megėjiška video įranga
2009-07-09
Praeities, dabarties ir ateities mėgėjiška filmavimo technika yra glaudziai susijusi: nesibaigus senesnės kartos technikos erai, atsiranda naujų modelių, o šiems dar nespėjus išpopuliarėti, dažnai sulaukiame gaminių su dar naujesnėmis technologijomis. Vaizdą, garsą ir kitokią informaciją įrašančios technikos - vaizdo kamerų – tobulinimas įgavo skaitmeninį pagreitį. Daugelis dar prisimena praėjusio šimtmečio populiariausius analoginius prietaisus ir gaminius. Dabar visa tai – praeitis, kurią pakeitė skaitmeninės technologijos.
Atmintis
2009-07-09
Šiame darbe pateikiama analizė dviejų atminties pakopų – užkodavimo ir atkūrimo. Taip pat supažindinama ir su atminties apibrėžimu. Psichologijoje įvairūs atminties ypatumai yra tyrinėti daugiau, nei kitų psichinių procesų. Atmintis užima ypatingą padėtį asmenybės psichinių reiškinių sistemoje. Ne tik mokslininkus ir tyrinėtojus domina šis psichinis reiškinys. Atminties savybių aktualumas būdingas kiekvienam visuomenės nariui.
Operatyvioji atmintis
2009-07-09
Šiaip jau tikriausiai visi žinome, kas yra kompiuterio darbinė atmintis (angliškai RAM, t.y. "Random Access Memory" - laisvai, iš bet kurios vietos skaitoma atmintis). Ji yra būtina kiekvienam kompiuteriui vien dėl to, kad procesorių ir duomenų saugyklų sparta labai skiriasi. Visais laikais procesoriai gebėjo apdoroti informaciją daug sparčiau, nei buvo galima ją siųsti iš kietojo disko, kompaktinio disko ar kitų pastoviosios atminties įrenginių. Vadinasi, tapo reikalinga tarpinė atmintis (TA), kuri būtų gerokai spartesnė už kietuosius diskus.
Intel Core Duo architektūra
2009-07-09
Pasaulinis IT inovacijų taikymo lyderis "Intel" pristatė technologijos "Intel Core" mikroarchitektūrą, ketinamą naudoti daugiabranduolinių tarnybinių stočių, stacionarių ir nešiojamųjų kompiuterių procesorių gamybai. Pasitelkus pažangią 65 nm technologiją bus gaminami didesnės spartos ir labiau energiją taupantys procesoriai. Jie bus naudojami stilingesniems, tylesniems ir mažesniems nešiojamiems bei namų kompiuteriams ir tarnybinėms stotims gaminti.
Opertyvioji atmintinė RAM
2009-07-09
RAM atmintis – kompiuterio darbinė atmintis, laisvai skaitoma iš bet kurios vietos. Cache - tarpinę, arba buferinę, atmintis L1 atmintis - pirmine tarpine atmintimis SRAM - statinė atmintis. Kaip ir seka iš jos pavadinimo, gali saugoti informaciją statiniame režime – t.y. kiek norima ilgai kai nėra kreipimosi (bet esant maitinančiai įtampai).
Mikroprocesorių teorija
2009-07-09
Šiuolaikinės SVS yra kuriamos panaudojant MP.MP vadinamas elektroninis įrenginys,skirtas skaitmeninės informacijos apdorojami ir šio apdorojimo proceso valdymui. Pagrindinės MP bruožas-visas skaitmeninės informacijos apdorojimo procesas valdomas programiškai.T.y.tas pas MP gali būt naudojamas skirtingiems valdymo uždaviniams spręsti keičiant tik jos valdymo programą.
Atminties kortelės atmintis
2009-07-09
Flash atminties tehnologija atsirado maždaug prieš 20 metų. Nuo tuos dienos flash atminties sąsaja sparčiai tobulėja. Nesunku paaiškinti, kodėl flash atminčiai skiriama tiek daug dėmėsio, nes tai sparčiausiai augantis segmentas puslaidininkių rinkoje. Kasmet flash atminties rinka išauga 15%, o tai viršyja visų kitų puslaidininkių augimo normas.Šiuo metu flash atmintį galima rasti įvairiuose skaitmeniniuose prietaisose.
Atmintis
2009-07-09
Pirmus eksperimentinius atminties tyrimus XIX a. pabaigoje atliko H.Ebbinghaus. Pirmųjų atminties tyrimų pagrindu buvo sugriauta atminties kaip vaško lentelės koncepcija (sukurta Platono), kurioje teigiama kad mintys ir jutimai įsispaudžia atmintyje kaip vaškinėje lentelėje. H.Ebbinghaus darė bandymus pats su savimi ir nustatė kiekybinius beprasmių skiemenų sekos įsiminimo, laikymo atmintyje, atsiminimo ir užmiršimo dėsnius.
Socialinė psichologija
2009-07-09
Psichologija - moksiąs apie sielą. Žodis "psichologija" kilęs iš graikų kalbos : psyche-siela ir logos-žodis, mokslas. Įvairiuose psichologijos vadovėliuose "psichologijos" terminas apibrėžiamas skirtingai. Psichologija yra mokslas apie psichikos faktus, dėsnius ir mechanizmus. Psichologija yra mokslas, tiriantis psichinius reiškinius, jų kilmę,raidą,reiškimosi forma ir mechanizmus. Psichologijos objektas keitėsi kartu su psichinių reiškinių prigimties aiškinimu.
Psichinė sveikata
2009-07-09
Gera psichinė sveikata sąlygoja žmogaus būtį ir yra visuomenės gerovės pagrindas. Tik psichiškai sveikas žmogus gali įgyvendinti savo tikslus, svajones ir būti naudingas visuomenei. Psichikos ligos yra labai paplitusios ir užima pirmą vietą tarp kitų ligų. Mokslinė – techninė revoliucija ir su ja susiję reiškiniai didina nervinę, psichinę ir emocinę įtampą. Tai kenkia žmogaus organizmui – žaloja nervinę bei psichinę sistemą – dėl to dažniau sergama neuroze, funkcinėmis nervų sistemos ligomis, alkoholizmu, narkomanija, dažniau apima depresija, daugiau gimsta fiziškai ir psichiškai nepilnaverčių vaikų.
Duomenų saugojimo irenginiai
2009-07-09
Dar visai neseniai kompiuteriai buvo laikomi daug kainuojančiais ir egzotiškais prietaisais. Nedaug kas įsivaizdavo, kad kompiuteriai gali tapti kasdienio gyvenimo dalimi. Tačiau dabar šis požiūris visiškai pasikeitė. Kompiuterio pagalba galima išspręsti net sudėtingiausius uždavinius, tačiau viena iš svarbiausių jo funkcijų – kaupti, apdoroti bei saugoti duomenis. Šiais laikais, kai reikalaujama vis daugiau vietos kompiuteryje didžiulėms duomenų bazėms vesti ir ne tik, sparčiai plečiasi, tobulėja bei atsiranda nauji duomenų saugojimo įrenginiai.
Operatyvinė atmintis
2009-07-09
Paprastai kaip sisteminė suprantama tik operatyvinė atmintis. Iš tikrųjų visos kompiuterinės sistemos darbingumas priklauso nuo visos atminties posistemės charakteristikų. Atminties posistemė apima operatyvinę atmintį kaip tokią; pirmo lygio keš-atmintį esančią procesoriaus branduolyje;
Atmintis
2009-07-09
Atmintis yra vienas iš psichikos procesų, kurių dėka mes suvokiam save kaip egzistuojančius laiko tėkmėje, ryšyje su praeitim, dabartim ir ateitim. Šnekant bendriau, atmintis gali būti apibūdinama kaip gebėjimas įsiminti, išsaugoti ir atgaminti bei panaudoti patyrimo teoriją. Atmintis jau senovės filosofams buvo įdomus tyrimų objektas. Platonas teigė, jog mintys ir jausmai atmintyje palieka antspaudus, panašiai kaip paliekami įspaudai vaško lentelėje.
Vaizdinės atminties tikslumo tyrimas
2009-07-09
Atmintis užima ypatingą asmenybės psichinių reiškinių sistemoje. Be atminties kiekvienas pojūtis ir suvokimas būtų naujas, žmogus negalėtų orientuotis tikrovėje. Mąstant be atminties negalima būtų operuoti sąvokomis, vaizduotė neturėtų iš ko kurti naujų vaizdinių, nebūtų ir asmenybės “aš” su pastoviais motyvais, nuostatomis išgyvenimų.
Semantinė atmintis
2009-07-09
Kaip teigiama David G.Myers knygoje “Psichologija”, atmintis tai mūsų išmoktų dalykų išlaikymas tam tikrą laiką.( Myers, 2000, Ž-2). Atmintį taip pat galime apibrėžti, kaip individo sugebėjimą įsiminti, susisteminti ir išlaikyti tai, kas jau buvo patirta ir prireikus vėl iššaukti reikiamą informaciją.
Vaizdinės atminties apimties tyrimas
2009-07-09
Atmintis užima ypatingą asmenybės psichinių reiškinių sistemoje. Be atminties kiekvienas pojūtis ir suvokimas būtų naujas, žmogus negalėtų orientuotis tikrovėje. Mąstant be atminties negalima būtų operuoti sąvokomis, vaizduotė neturėtų iš ko kurti naujų vaizdinių, nebūtų ir asmenybės “aš” su pastoviais motyvais, nuostatomis išgyvenimų.
Atmintis
2009-07-09
Atmintis yra vienas iš psichikos procesų, kurios dėka suvokam save kaip egzistuojančius laiko tekmėje su praeitimi, dabartimi ir ateitimi. Tai įgyjamos informacijos kaupimas mūsų sąmonėje. Ji apima ir prenatalinį laikotarpį. Tai vyksta net mums neįsisąmoninant, lyg savaime.
Atmintis
2009-07-09
Išsamus skaidrių pristatymas apie atmintį. Įsiminimo metu patyrimo medžiaga yra transformuojama į tokią formą (nervinius impulsus), kurioje galėtų būti saugoma atmintyje ir jau transformuota padedama į atmintį. Nuo įsiminimo labai priklauso atgaminamos medžiagos kiekis ir kokybė.
Psichologija
2009-07-09
I PASKAITA. Psichologijos apibrėžimas, šakos, tyrimų sritys, tyrimų metodai. Psichologija - mokslas apie žmogaus elgesį ir mentalinius procesus. Psichologija tiria psichinius reiškinius, jų kilmę, raidą, reiškimosi formas ir mechanizmus. Mokslas apie sielą. Psichologija siekia atsakyti į aibę klausimų, susijusių su žmogumi. Kodėl žmogus taip elgiasi?
Atmintis
2009-07-09
Skiriamos trys atminties posistemės: sensorinė, trumpalaikė ir ilgalaikė. Sensorinėje atminties posistemėje labai trumpai (paprastai trumpiau nei sekundę) laikoma jutimo organais gauta ir jutimiškai apdorota, t.y. suvokta, informacija. Ji gali būti išskirstoma pagal jaudinimo pobūdį, pvz., regimoji, girdimoji ir t.t. Manoma, jog sensorinėje atmintyje vyrauja fiziniai informacijos požymiai.
Informatikos egzamino klausimų konspektai
2009-06-10
Informacijos ir informatikos samprata. Pranešimai ir signalai. Diskretieji ir tolydieji dydžiai. Informacijos kaupimo, saugojimo, perdavimo ir apdorojimo priemonės. Informacijos matavimas, matavimo vienetai. Informacijos kiekis. Informacijos kodavimas. Informacinio modeliavimo samprata. Informacinės technologijos raida. Kompiuteris ir informacinė visuomenė. Kompiuterio atmintinė, jos talpa ir matavimo vienetai. Kompiuterio programinė įranga. Jos paskirtis, klasifikacija. Operacinės sistemos ir jų paskirtis. Taikomoji programinė įranga. Algoritmo sąvoka ir savybės. Uždavinių sprendimo kompiuteriu etapai. Algoritmavimo bei programavimo kultūros elementai.